2012학년도 의·치의학교육입문예비검사
자연과학 I

성명: _________ 수험번호: _________

○ 검시기 시작되기 전에 문제지를 넘기지 마십시오. 문항을 미리 볼 경우 부정행위에 해당될 수 있습니다.
○ 이 문제지는 60분간으로 구성되어 있습니다. 검시 시작부터 15분 후 문항 수를 확인하시십시오.
○ 각 문항의 배점은 12점 또는 23점입니다. 이중 23점인 문항은 []으로 표시하였습니다.
○ 선택지는 모두 5지선다형입니다. 정답에 해당하는 것 1개만 선택하여 답안지에 표시하십시오.
○ 문제지에 성명과 수험번호를 정확히 표기하십시오.
○ 답안지에 수험번호와 답을 표기할 때에는 '답안지 작성 시 반드시 지켜야 하는 사항'에 따라 표기하십시오.
○ 검시 시간은 오전 2시부터 3시 30분 (90분)입니다.
○ 이 문제지는 검시 종료 후 답안지와 함께 제출하여야 합니다.
자연과학

1. 그림은 글루타힘, 발린, 머신이 폐합된 염장을 절차의 지점 X의 전기 차원과의 관계를 보여준 것으로,
 (1) (2) (3) (4) 지점에서 발생하는 아미노산을 흡착으로 나타낸 것이다.

2. 그림은 유전자 중의 원자열의 열핵으로부터 시료를 얻는 과정을 나타낸 것이다.

3. 세포질에서 외부로부터 로도양이 분해되는 과정에서 생성되지 않는
 화합물은?
 ① 헤모글로빈, ATP
 ② 로도양-6-인산, 로도양-1-인산
 ③ 글리세르알데히드-3-인산, 포스포알데히드
 ④ 로도양-5-인산, 니트로톡시아세트인산
 ⑤ NAD⁺, CO₂

4. 그림은 세포의 생장속도를 나타낸 것이다.

이에 대한 설명으로 옳은 것들 <모기>에서 있는 대로 모든 것은?

 <모기>
 ① 구간 A에서 세포의 대사활동은 없음.
 ② 구간 B에서 세포의 대사활동 (doubling time)은 4시간이다.
 ③ 구간 C에서 세포의 대사활동은 있음.

 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
5. 다음은 비타민 (가)~(다)에 대한 자료이다.

<table>
<thead>
<tr>
<th>(가)</th>
<th>(나)</th>
<th>(다)</th>
</tr>
</thead>
<tbody>
<tr>
<td>비타민 C</td>
<td>비타민 D</td>
<td>비타민 B</td>
</tr>
<tr>
<td>비타민 K</td>
<td>비타민 B₉</td>
<td>비타민 B₃</td>
</tr>
<tr>
<td>비타민 D</td>
<td>비타민 B₉</td>
<td>비타민 K</td>
</tr>
<tr>
<td>비타민 C</td>
<td>비타민 K</td>
<td>비타민 B</td>
</tr>
<tr>
<td>비타민 B</td>
<td>비타민 B₉</td>
<td>비타민 D</td>
</tr>
</tbody>
</table>

다음 중 (가)~(다)로 손이 아닌 것은?

6. 다음 중 (가)~(다)로 손이 아닌 것은?

<table>
<thead>
<tr>
<th>(가)</th>
<th>(나)</th>
<th>(다)</th>
</tr>
</thead>
<tbody>
<tr>
<td>물리치료</td>
<td>물리치료</td>
<td>물리치료</td>
</tr>
</tbody>
</table>

7. 사춘기 청소년의 혈액을 청소하는 방법은 (가)~(나)로 손이 아닌 것은?

<table>
<thead>
<tr>
<th>(가)</th>
<th>(나)</th>
</tr>
</thead>
<tbody>
<tr>
<td>제1혈액제제</td>
<td>우수분면 후기</td>
</tr>
<tr>
<td>제2혈액제제</td>
<td>장수분면 I 전기</td>
</tr>
<tr>
<td>제3혈액제제</td>
<td>장수분면 II 후기</td>
</tr>
<tr>
<td>제4혈액제제</td>
<td>장수분면 II 전기</td>
</tr>
</tbody>
</table>

8. 스프레스를 받으면 피곤함, 어리석함, 저항력의 현장 증상 나타난다. 이에 대응할 방법으로 손이 아닌 것은?

<table>
<thead>
<tr>
<th>(가)</th>
<th>(나)</th>
</tr>
</thead>
<tbody>
<tr>
<td>피로관리</td>
<td>피로관리</td>
</tr>
</tbody>
</table>
9. 다음은 그렇 경색법을 이용하여 세균 A와 B를 구분하는 실험이다.

<실험 과정>
(가) 솔비아드로마스 위에 세균 A, B를 각각 함께 도핑하고 염색하였다.
(나) 크리스탈 바이올렛 용액으로 [분] 처리한 후 증류수로 세척하였다.
(다) 요모드 용액으로 [분] 처리하고 증류수로 세척하였다.
(라) 액화술로 탈색하였다.
(마) 시프트로 용액으로 [분] 대조 혈액한 후 증류수로 세척하였다.
(바) 건조한 후 현미경으로 관찰하였다.

<실험 결과>
A는 청은 보라색으로, B는 연분홍색으로 관찰된다.

이에 대한 설명으로 올은 것을 <표기>에서 있는 대로 고른 것은?

<표 기>
① A가 B보다 세포벽이 더 두꺼이다.
② 대상균을 그림 영역에 A와 동일한 결과가 나온다.
③ B에 지질다량체 (lipopolysaccharides)가 존재한다.
④ , ② , ③ = ①

10. 다음은 포름알데히드 (LDH)에 대한 자료와 설명이다.

<자료>
① 소란렇게 H와 M의 조합으로 구성된 동위효소이다.
② 개의 동위효소로 구성되어 있다.
③ H와 동위효소는 57가, M와 동위효소는 6가이다.

<실험 목적>
(가) 이런 조건에서 분리한 시료를 설명 O에 계제하고 pH 7.0
이정도스로 혈액을 전기정량하였다.
(나) LDH 호소 활성을 지로으면 (symogamy)로 나타낸다.

<실험 결과>
X에 존재하는 LDH의 소란렇게 구성으로 올은 것은? (단, 아래 정자는
소란렇게의 개수를 나타낸다.)

① H₄ ② H₃M ③ H₂M₄
④ H₂M₂ ⑤ M₄

11. 적신스메스는 유전물질이 단백질이 아니라 DNA임을 대장균과
T2 파자를 이용하여 증명하였다. 이 실험에 대한 설명으로 올은 것은?

① T2 파자는 단백질과 DNA로 구성된다.
② 단백질은 주로, DNA는 주로 포유주한다.
③ T2 파자는 수포주로 내로 유전물질을 포유주한다.
④ 대장균의 T2 파자는 크기에 현저한 차이가 있어 분리가 가능하다.
⑤ T2 파자의 유전물질이 들어간 대장균에 세균 밖에 추적된 파자
어디 (cos+)를 분리한다.
12. 대상 중인 세포에 UV를 소켓 투광하여 세포분열이
재개되고 세포의 수가 증가한다. 이 현상의 원인은 어떤 것일까?
① 염색체의 손상
② 세포막의 변형
③ RNA의 합성 증가
④ RB 단백질의 활성화
⑤ 이온운동이로부터 시로포름 C의 유출

13. 그림 (가)는 저해제 I가 있을 때와 없을 때 효소 A의 기질 농도에
따른 효소 반응속도를 나타낸 것이다. 그림 (나)는 (가)의 그래프를
아래의와 같이 클로로 나타낸 것이다.

(가)

(나)

이에 대한 설명으로 옳은 것은?
① I는 경계에 저해제이다.
② I는 A의 Vmax를 감소시킨다.
③ I가 있을 때 A의 Vmax는 20 µmol/min이다.
④ 그래프 (나)에서 x축은 \(\frac{1}{\text{효소 농도}} \)이다.
⑤ I가 있을 때보다 없을 때 효소 A의 Km 값은 더 크다.
자연과학 I

18. 어떤 단백질 X의 기능을 가장 잘 제시하게 처리한 것으로 예상되는 X 유전자의 플레미는?

① 염모염색의 골 부분에 농축도가 1개가 상업된 플레미
② 염모염색의 외부 부분에 농축도가 1개가 보일 때 플레미
③ 염모염색의 중간 부분에 농축도가 3개가 보일 때 플레미
④ 염모염색의 중간 부분에 농축도가 4개가 보일 때 플레미
⑤ 염모염색의 중간 부분에 농축도가 1개가 보일 때 플레미

17. 다음은 어떤 맥보드 원자에 대한 자료이다.

① 혈장 포도당 농도=400 mg/dL
② 식구세 여취=150 mL/분
③ 포도당 혈액에 농도=300 mg/dL
④ 혈당 60g/L ⑤ 75g/L

하루 2,000 kcal이 필요하다고 하면, 이 조건에 해당하는 양은?

(당, 1g당 4kcal, 1g당 1,440kcal)
① 0.0g ② 122.8g ③ 252.0g ④ 576.0g ⑤ 748.8g

이 실험은 관찰하여 물질 A에 대한 설명을 올린 것만 <요약>에서 재미있는 데로 고른 것은?

① ② ③ ④ ⑤

16. 다음은 물질 A가 혈액의 이산화 수축에 미치는 영향을 조사한 실험이다.

○ 실험 1
(가) 세포의 세포막을 저지하고 이동력을 제거한다.
(나) 세포막을 제거한 다음, 각각 5% 천식 증가기에 체외로 한다.
(다) (라)에서 세포를 A를 처리된 후 혈액수축을 가하여 혈관의 수축을 유도한다.
(라) 혈관의 혈관벽에 아세틸콜린을 농도변화로 처리하여 혈관의 이완 점을 수행한다.

○ 실험 2
실험 1의 각 (가)의 각 세포께서 내피세포를 제거한 다음, 실험 1의 피경 (나)~(라)를 수행한다.

○ 실험 결과

실험 1
실험 2

이 실험은 관찰하여 물질 A에 대한 설명을 올린 것만 <요약>에서 재미있는 데로 고른 것은?

① ② ③ ④ ⑤

15. 다음은 물질 A가 혈액의 이산화 수축에 미치는 영향을 조사한 실험이다.

○ 실험 1
(가) 세포의 세포막을 저지하고 이동력을 제거한다.
(나) 세포막을 제거한 다음, 각각 5% 천식 증가기에 체외로 한다.
(다) (라)에서 세포를 A를 처리된 후 혈액수축을 가하여 혈관의 수축을 유도한다.
(라) 혈관의 혈관벽에 아세틸콜린을 농도변화로 처리하여 혈관의 이완 점을 수행한다.

○ 실험 2
실험 1의 각 (가)의 각 세포께서 내피세포를 제거한 다음, 실험 1의 피경 (나)~(라)를 수행한다.

○ 실험 결과

실험 1
실험 2

이 실험은 관찰하여 물질 A에 대한 설명을 올린 것만 <요약>에서 재미있는 데로 고른 것은?

① ② ③ ④ ⑤

14. 다음은 물질 A가 혈액의 이산화 수축에 미치는 영향을 조사한 실험이다.

○ 실험 1
(가) 세포의 세포막을 저지하고 이동력을 제거한다.
(나) 세포막을 제거한 다음, 각각 5% 천식 증가기에 체외로 한다.
(다) (라)에서 세포를 A를 처리된 후 혈액수축을 가하여 혈관의 수축을 유도한다.
(라) 혈관의 혈관벽에 아세틸콜린을 농도변화로 처리하여 혈관의 이완 점을 수행한다.

○ 실험 2
실험 1의 각 (가)의 각 세포께서 내피세포를 제거한 다음, 실험 1의 피경 (나)~(라)를 수행한다.

○ 실험 결과

실험 1
실험 2
18. 단수화물이 없고 저량의 단백질이 많은 음식을 채널 없이 계속 맑는 사람에게서 알바제가 섭취되는 현상이 나타난다. 이에 이 사람에게서 일어날 것으로 예상되는 베이 미사 병상으로 온은 것 및 <보기>에서 있는 대로 고른 것은?

<table>
<thead>
<tr>
<th>(보기)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 단백질 중 일부는 야노 gó로 분해된 후 단수화물로 바린다.</td>
</tr>
<tr>
<td>2. TCA환호에 사용되는 육산화이소드산과 시도포산이 지방으로부터 생성된다.</td>
</tr>
</tbody>
</table>

19. 다음과 목적 A가 세포기물 채력하는 방식을 알아보기 위하여 수행한 실험의 결과이다.

- A의 유전자는 세포 내에 영향하지 않았다.
- A의 농도가 증가함에 따라 A의 이용속도가 증가하였고, 어느 농도 이상에서는 이용속도가 일정하였다. 세포에 CV 용액을 처리했을 때 A의 이용은 영향을 받지 않았다. 세포의 면도층 내부에서 A가 발견되지 않았다.

A의 이동 방식으로 가장 적합한 것은?

1. 전생식
2. 단백질을 통한 확산
3. 이온화이소들 통한 수용
4. 수용체를 통한 콧침 확산
5. 수용체에 떨개 내세포 작용 (receptor-mediated endocytosis)

20. 세포막에 존재하는 당 수송체 (glucose transporter, GLUT)는 포도당의 결합하여 세포 안으로 포도당을 수용한다. GLUT는 여러 종류의 이せい체 (isoform)가 있으며, 보는 이せい체 각각의 포도당 수용을 나타낼 것이다.

<table>
<thead>
<tr>
<th>포도당 수송체</th>
<th>분포</th>
<th>기능</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLUT1</td>
<td>모든 세포</td>
<td>기본적인 포도당 수용</td>
</tr>
<tr>
<td>GLUT2</td>
<td>간, 심장</td>
<td>에너지 저장, 인슐린 분비</td>
</tr>
<tr>
<td>GLUT4</td>
<td>근육과 지방세포</td>
<td>에너지 저장</td>
</tr>
</tbody>
</table>

이에 대한 설명으로 온은 것 및 <보기>에서 있는 대로 고른 것은?

(보기)
1. GLUT1은 ATP를 사용하여 포도당을 수용한다.
2. GLUT2는 특수한 환경에서 인슐린이 관여한다.
3. GLUT1의 Km 값은 GLUT2의 Km 값보다 작다.
21. 그림 (가)와 (나)는 세포가 죽는 세포 두 과정에서 일어나는 세포의 미세구조 변화를 나타내는 것이다.

(가) → →
(나) → →

이에 대한 설명으로 옳은 것만을 <보기>에서 있는대로 고른 것은?

- 보기

① 가, 나 ② 가, 다 ③ 나, 다 ④ 가, 다 ⑤ 나, 다 ⑥ 다

22. 그림은 GTP기술발효소인 Ras 단백질의 활성 조절을 나타낸 것이다. GTP와 결합한 Ras는 활성화되어 세포 증식을 유도하는 신호를 전달한다. 구이노포호환자(GEF)는 Ras와 GTP의 결합을 촉진하며, GTP기술발효소-활성화단백질(GAP)은 Ras에 의해 GTP 기술발효를 촉진한다.

다음 문단이 증가로 높게 과도하게 세포를 증식시키는 것은?

① GDP와의 결합력이 증가한 Ras 활성변이
② GTP 기술발효 불활성 상태에서의 Ras 활성변이
③ Ras 단백질 발현을 조절하는 활성변이
④ 활성화 단백질(GEF) 발현변이
⑤ 기능이 상실된 GAP 활성변이
23. 그림은 사람 세포 한 개에서 관찰되는 세포 A~D를 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 택 3 과목을 채우기

<보 기>
1. A는 면역장포(포수)에 대한 수용체를 지니고 있다.
2. B는 감수능력을 향해 C는 반응성이다.
3. 세포 B에서 분비되는 면역세포는 D 형성을 유도한다.

① A ② B ③ C ④ D ⑤ A, B

24. 그림은 사람의 장에 있는 어떤 세포 A, B의 성숙성 발달세포(telomere) 장이 변화와 시간에 따라 나타낸 것이다.

이에 대한 설명으로 옳은 것들 <보기>에서 채울 것은?

<보 기>
7. 정렬세포는 A, B 같은 유형을 보인다.
8. B가 분열을 덜하는 등 발달세포의 질이 없는 높아진다.
9. 발달세포는 DNA의 복사 현이 있다.
10. 발달세포유전자(telomere) 등에 있는 DNA 서열이 DNA 중합효소의 주요적으로 작용한다.

① 7, 8 ② 7, 9 ③ 7, 8 ④ 9, 10 ⑤ 8, 10
26. 그림은 세포막에서 분리한 Na⁺-K⁺ 폭포 단백질을 착성하는 반대 방향으로 이동하는 것을 나타내는 것이고, 이를 티포소 내부의 외부의 농도를 나타낼 것이다.

<table>
<thead>
<tr>
<th>구분</th>
<th>농도</th>
<th>ATP</th>
</tr>
</thead>
<tbody>
<tr>
<td>내부</td>
<td>100 mM Na⁺</td>
<td>2 mM ATP</td>
</tr>
<tr>
<td>외부</td>
<td>10 mM Na⁺</td>
<td>5 mM K⁺</td>
</tr>
</tbody>
</table>

티포스로 실질된 Na⁺-K⁺ 폭포에 의한 이온 이동에 대한 설명으로 올바른 것은? (단, 분리된 Na⁺-K⁺ 폭포 단백질에는 이온화 ATP가 결합되어 있지 않다.) [23점]
① ATP의 소모 없이 Na⁺는 농도 차에 의하여 티포스 내부에서 외부로 이동한다.
② ATP를 소모하여 Na⁺는 티포스 내부에서 외부로, K⁺는 티포스 외부에서 내부로 이동한다.
③ ATP를 소모하여 Na⁺는 티포스 외부에서 내부로, K⁺는 티포스 내부에서 외부로 이동한다.
④ ATP를 소모하여 Na⁺가 티포스 외부에서 내부로 이동할 후 폐포는 작동을 멈춘다.
⑤ 정상 세포막에서 달리 Na⁺의 농도가 티포스 내부와 외부에서 적정되어 있으므로 폐포는 작동하지 않는다.

28. 어떤 균종 (2n=10)의 세포막은 1개의 병을 가졌다고 한다. 역량 손실률은 10이었고, DNA량은 0.1 ng이다. 그러면 이 균종의 어떤 세포 A-C에서는 표의 값이 DNA량, 역기 개수, 손실률과 관계하였다.

<table>
<thead>
<tr>
<th>세포</th>
<th>DNA량/ng</th>
<th>역기 개수/세포</th>
<th>손실률/백</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100 ng</td>
<td>1,000</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>100 ng</td>
<td>1</td>
<td>10,000</td>
</tr>
<tr>
<td>C</td>
<td>100 ng</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

A-C에 대한 설명으로 올바른 것은? [23점]
① A에서는 역기로 응답이 없으나 세포막 병원은 없이 있다.
② A와 B의 세포막 손실률은 같다.
③ B에서는 역기체가 나타나서 백혈구는 현저히 소실되지 않았다.
④ C에서는 적혈구체가 소실된다.
⑤ C와 같은 병원은 보이는 세포는 수분의 환경에서 판찰된다.

27. 그림은 정상적 (가)와 어떤 실패적 원자 (나)의 실험도를 나타낸 것이다.

(가)
(나)

이 실패의 실험 기록 이상에 대한 설명으로 가장 적절한 것은? [23점]
① 방향성방의 손상으로 실험 자체의 일부만이 실패로 진행된다.
② 동방방의 손상으로 실험의 성과가 일어나지 않는다.
③ 동방방의 손상으로 실험 자체의 일부만이 실패로 진행된다.
④ 방향성방의 실패로 실험 자체의 실패로 실패한다.
⑤ 실패는 실패하나 실패는 수복되지 않는다.
자연과학 I

이 환자에서 나타나는 갑작스러운 손상은 간을 <보기>에서 있는 대로 고르는 것은?

[보기]
① 가, 오름방향 손상 강화가 소실된다.
② 나, 오류 방향 손상이 소실된다.
③ 떼, 원발 통증이 소실된다.
④ 느, 느

29. 다음은 단백질 X, Y, Z에 존재하는 시스템인 전기의 이동화합 여부를 분석하는 실험이다.

<실험 과정>
(가) 시험관 I, II를 준비한다.
(나) 시험관 I, II 각각에 X+Y+Z 혼합액을 첨가한다.
(다) I에는 NEM→DTT→NEM을, II에는 NEM→DTT
→NEM을 순서대로 첨가한다. 이때 각 병의 단계에서 단백질을 점검한 후, 보존아이 플라스틱 용기에 놓고 식각변이 항목에 적기한다.
○ NEM (N-ethylmaleimide): 이동화합함에 참여하지 않는 시스템의 -SH기를 공유화합한다.
○ NEM : 방사성합증원으로 표지된 NEM
○ DTT : 이동화합함을 끊어 -SH기를 만든다.
(마) I, II에 첨가 있는 단백질 정기 여부를 박사선사동 사정법으로 관찰한다.

<실험 결과>

[그림]

실험 과정 (나)의 X, Y, Z 단백질에 대한 실험으로 손상한 간을 <보기>에서 있는 대로 고르는 것은?

[보기]
① 가, 느
② 나, 느
③ 떼, 느
④ 느, 느

① 가, 느
② 나, 느
③ 떼, 느
④ 느, 느
30. 그림은 세포에서 microRNA가 형성되는 두 가지 과정 (가), (나)를 나타낸 것이다.

(가)

(나)

이에 대한 설명으로 옳은 것들을 [보기]에서 있는 대로 고른 것은?

[보기]

1. (가) 과정으로 생성된 microRNA는 표백 mRNA의 5' UTR 에 결합하여 mRNA를 약화함.
2. (나) 과정으로 생성된 microRNA는 미분사원이다.
3. microRNA는 소 להת, 식용, 호흡동물 접촉 고통 전이계에서 발현된다.

① 가 ② 나 ③ ④ 가, 나 ⑤ 가, 나

31. 그림은 양막류의 발생 과정 중 상기단에 주변 조직을 나타낸 것이다.

이에 대한 설명으로 옳지 않은 것은?

① A에서 근육이 발달한다.
② B는 근육점으로 분화한다.
③ C는 근육의 바로 분화한다.
④ D의 세포 일부는 이동하여 세포세토로 분화한다.
⑤ A와 B의 분화에 C가 영향을 준다.

32. 그림은 3 종의 과충 개체군 (A~C)에서 부모 물질이와 자손 물질 이의 상관관계를 확인한 것이다.

이에 대한 해석으로 옳은 것들을 [보기]에서 있는 대로 고른 것은?

[보기]

1. A에서 자손 물질이는 유전자 표현에 따라 결정된다.
2. B에서 자손 물질이는 유전자 표현에 따라 결정된다.
3. 자손의 물질이에 미치는 유전자 영향은 B보다 C에서 더 크다.

① 가 ② 나 ③ ④ 가, 나 ⑤ 가, 나
33. 그림은 세포내의 유전자에서 전사가 시작될 때 프로모터와 전사
 염정에 여러 단백질들이 나타난 것이다.

이에 대한 설명으로 옳은 것들을 <보기>에서 있는 대로 고르면 것은?

 대) A는 전사활성자가 떨어져도 RNA증합효소 II에 상호작용할 수
 있도록 DNA를 구축하는 역할을 한다.
 중) B는 인해시 (enhancer)의 후속효과를 항양한다.
 작) C는 RNA증합효소 II의 C-단면 영역 (CTD)을 활성화
 시킨다.

 <보기>
 ① 높다. ② 낮다. ③ 높다. ④ 높다. ⑤ 낮다.

34. A, B 유전자 사이의 제조함도는 1%이다. 이에 대한 설명으로
 적정하지 않은 것은?

 ① 정복제조 100개체 중 1개체의 A와 B 유전자 사이에 1번의 교차가
 이루어진다.
 ② 통일 혈액형상에서 A와 B 유전자 사이의 거리가 1등분포로
 (GM)이다.
 ③ 정체 200개체 A와 B 유전자 사이의 제조함이 들어간 정체는 2%이다.
 ④ A와 B 유전자 사이의 거리가 1 유전자의등분위이다.
 ⑤ 제조함도는 1%는 2.2개인 두 유전자 사이에서 얼마나는
 제조함도의 1/2이다.

35. 그림은 대장장을 포도당과 젖당 혼합 배양액에 배양하면서, 시간에
 따른 개체수 변화를 나타낸 것이다.

구간 I, II, III의 대장균에서 나타나는 현상을 올바르게 설명한 것은?

 ① [m] 담배연의 능도는 I > II > III 순으로 낮다.
 ② I보다 III에서 cAMP 능도가 더 높다.
 ③ cAMP-CAP (catabolic activator protein) 복합체가 II에서 서로
 분리된다.
 ④ I보다 II에서 β- 갈락토시드의 능도는 더 높다.
 ⑤ CAP의 발생가 I < II < III 순으로 높다.

36. 생활용 잔액에 따라 개체군 X는 K-선택을, 개체군 Y는 μ-선택을
 한다. 개체군의 여러 특성에 따라 X와 Y를 비교한 것으로 올바른 것은?

<table>
<thead>
<tr>
<th>특성</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>반복 빛수</td>
<td>X > Y</td>
<td></td>
</tr>
<tr>
<td>정점 능력</td>
<td>X < Y</td>
<td></td>
</tr>
<tr>
<td>발제 속도</td>
<td>X < Y</td>
<td></td>
</tr>
<tr>
<td>유효 크기</td>
<td>X > Y</td>
<td></td>
</tr>
<tr>
<td>자손의 수</td>
<td>X < Y</td>
<td></td>
</tr>
</tbody>
</table>
87. 그림은 체액세포가 세포 X에 의해 활성화되어 결핵균에 대항하는 과정을 나타낸 것이다.

<table>
<thead>
<tr>
<th>세포 종류</th>
<th>표면마커</th>
<th>사이토카인</th>
</tr>
</thead>
<tbody>
<tr>
<td>NK 세포</td>
<td>CD8</td>
<td>IL-10</td>
</tr>
<tr>
<td>NK 세포</td>
<td>CD4</td>
<td>IFN-γ</td>
</tr>
<tr>
<td>Td1 세포</td>
<td>CD8</td>
<td>IL-10</td>
</tr>
<tr>
<td>Td1 세포</td>
<td>CD4</td>
<td>IFN-γ</td>
</tr>
<tr>
<td>Td2 세포</td>
<td>CD8</td>
<td>IFN-γ</td>
</tr>
</tbody>
</table>

88. 그림은 흉내 상해의 사람의 손톱을 시각화하면서 근육에서 사용되는 ATP의 관찰한 변화를 나타낸 것이다.

다음 중 A-D중 <보기>와 1~7와 따르게 연결한 것은?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>④</td>
<td>③</td>
<td>⑦</td>
</tr>
<tr>
<td>②</td>
<td>⑤</td>
<td>⑥</td>
<td>⑧</td>
</tr>
<tr>
<td>③</td>
<td>⑥</td>
<td>⑤</td>
<td>⑧</td>
</tr>
<tr>
<td>④</td>
<td>⑦</td>
<td>①</td>
<td>④</td>
</tr>
</tbody>
</table>

보기: ①. 근육에 저장된 ATP
②. 세포호흡
③. 혈기성 대사작용
④. 신장 코타미늄
이에 대한 설명으로 올바른 것은?

① 유전자 X를 내장시켰습니다.
② 항체 X가 단백질을 생성했으며, 항체 X의 구조로 생성했습니다.
③ 유전자 X의 조건은 실험에서 모두 실험에서 달랐습니다.
④ 유전자 X의 조건은 실험에서 모두 실험에서 달랐습니다.
⑤ 유전자 X의 조건은 실험에서 모두 실험에서 달랐습니다.

41. 그림에 따라 주요 항체의 형성 및 구조를 나타낸 것이다.

이에 대한 설명으로 올바른 것은?

① 항체의 IgG 구조는 (가)이다.
② (가)나 (나)의 항체는 IgG를 생성하고 있다.
③ 항체가 항체와 결합하는 항체의 구조는 주로 (나)이다.
④ 구조가 정점에 부착된 형식의 구조는 주로 (나)이다.
⑤ 항체에 IgG 소결합(나) 세포에서 주로 (나)의 항체가 분리된다.
43. 그림은 T 세포를 유도하기 (flow cytometry)로 분석한 결과를 나타낸 것이다.

![Flow Cytometry Image]

I과 II에 해당하는 T 세포의 특성으로 올바른 것들은 붉은 글씨로 나타난 것이며, 검은 글씨로 나타난 것이 다르다.

44. 혈액세포에서 유전자 p는 시트론이 A에 의해 발현이 조절된다. 다음은 약물 B에 의해 세포 내 단백질 P의 양이 증가되는 경향을 알아보기 위한 실험이다.

<실험 결과>
(1) 유전자 A와 β-tubulin mRNA에 대한 노란색 플록 실험
(2) 단백질 P와 β-Tubulin에 대한 웨스턴블록 실험
(3) 항-주위역광 항체로 면역세포의 후, 항-P 항체로 웨스턴블록 실험

이에 대한 실험으로 올바른 것들은 붉은 글씨로 나타난 것이며, 검은 글씨로 나타난 것이 다르다.

[보기]

43. 다음은 희석실시 시술의 가상의 생생표 (little table)이다.

<table>
<thead>
<tr>
<th>나이 (세)</th>
<th>살아남은 수</th>
<th>기간 동안 총계 몇 명이 희생</th>
<th>살아남은 수</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1~50</td>
<td>500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>61~100</td>
<td>400</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>121~170</td>
<td>300</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>181~240</td>
<td>200</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>241~300</td>
<td>100</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>301~360</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

이에 대한 설명으로 올바른 것들은 붉은 글씨로 나타난 것이며, 검은 글씨로 나타난 것이 다르다.

[보기]

43. 다음은 희석실시 시술의 가상의 생생표 (little table)이다.

<table>
<thead>
<tr>
<th>나이 (세)</th>
<th>살아남은 수</th>
<th>기간 동안 총계 몇 명이 희생</th>
<th>살아남은 수</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1~50</td>
<td>500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>61~100</td>
<td>400</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>121~170</td>
<td>300</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>181~240</td>
<td>200</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>241~300</td>
<td>100</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>301~360</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

이에 대한 설명으로 올바른 것들은 붉은 글씨로 나타낸 것이며, 검은 글씨로 나타낸 것이 다르다.

[보기]
자연과학 I

45. 염기 수열에서 사용하는 DNA 산성염은 다중순서반복염기형렬 (short tandem repeats, STR)의 개별 각 염기형열을 이용하는 것이다. 그로인 해석 사람들이 염기형열의 유일한 특이 (locus)에 존재하는 특징 STR의 크기를 분석하는 과정을 나타낸 것이다.

48. 표를 통해 각 염기 환경에 도유함을 알 수 쇼의 3개 유전자에서 알아낸 염기형열의 변미 속도를 나타낸 것이다. 비중간 변형률 (nonsynonymous mutation)는 아미노산의 변형을 수반하고, 동일변형률 (synonymous mutation)는 아미노산의 변화를 수반하지 않는다.

<table>
<thead>
<tr>
<th>유전자</th>
<th>염기형열 변형 속도 (10억 년 ~ 억기)</th>
</tr>
</thead>
<tbody>
<tr>
<td>비중간 변형률</td>
<td>동일변형률</td>
</tr>
<tr>
<td>허스톤 H3</td>
<td>0.0</td>
</tr>
<tr>
<td>오세포플로빈</td>
<td>0.5</td>
</tr>
<tr>
<td>γ-인더페론</td>
<td>3.1</td>
</tr>
</tbody>
</table>

이에 대한 설명으로 송은 것만 <보기>에서 있는 대로 고른 것은?

【보기】
1. (A)의 PCR에서 사용한 P2와 P4의 염기형열은 서로 동일하다.
2. (B)와 같이 동일한임시 2개의 염기형열 법과가 나타나는 이유는 모세관 결 정기형열이다.
3. STR은 단백질을 약화하는 유전자이다.

1. 2. 3. 3. 3. 3.
47. 다음은 식물은 성장한 과정에서 일어나는 여러 가지 변화에 관한 자료입니다.

이제 이러한 변화의 원인을 <보기>에서 정리해 보코운 것을요?

1. 세포의 생합 발생(production efficiency)은 33%이다.
2. 세포의 세포핵은 1001이다.
3. 일반적으로 세포의 분열은 세포확장을 보고 나서 생합 발생을 찾는다.

48. 다음은 유전 유전자를 의도하는 실험이다.

<실험 방법>
이제 그림과 같이 합성 mRNA를 무세포 반응 시스템과 20종의 아미노산이 뿌려 있는 시험판에 넣고 반응시킨 후, 합성된 플라미드의 아미노산 조성을 분석한다.

<table>
<thead>
<tr>
<th>실험</th>
<th>발현 mRNA</th>
<th>합성된 플라미드</th>
<th>조성하는 아미노산</th>
</tr>
</thead>
<tbody>
<tr>
<td>실험 1</td>
<td>5'-----CACACACACAC----3'</td>
<td>프로레인 100</td>
<td></td>
</tr>
<tr>
<td>실험 2</td>
<td>ATP:CTP의 능도 비율이 5:1인 혼합물을 이용하여 합성된 mRNA</td>
<td>이스테인 100</td>
<td></td>
</tr>
</tbody>
</table>

실험 1과 2의 결과로부터 추론할 수 있는 프로레인과 이스테인의 조합은?

<table>
<thead>
<tr>
<th>프로레인</th>
<th>이스테인</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>CCC</td>
</tr>
<tr>
<td>ACA</td>
<td>CAC</td>
</tr>
<tr>
<td>CAC</td>
<td>ACA</td>
</tr>
<tr>
<td>AAC</td>
<td>CCA</td>
</tr>
<tr>
<td>CAA</td>
<td>ACC</td>
</tr>
</tbody>
</table>
49. 그림 (가)는 시간에 따른 성장에 가져오는 해충 수의 비율로, (나)는 성장이의 성장 방호 및 체중과 영양요소를 사이의 관계를 나타내는 것이다.

이에 대한 설명으로 옳은 것들을 <보기>에서 있는 대로 고른 것은?

1. (가)의 해충 대체수는 하리바인더의 평행이 수축되었다.
2. (가)는 정향성 선택 (directional selection)의 예이다.
3. (나)는 안정화 선택 (stabilizing selection)의 예이다.

50. 해충의 명령사 생장 위계에 있는 호소 a, b, c가 필요하다. 다음은 a, b 중의 화학물질에서 A, B와 유전자의 물질에 B, c 유전자의 물질에 C를 이룬다. 실험이다.

[실험 1]
22℃에서 A, B, C 물질 호소영양배지에 도달하여 cross-feeding test를 수행한다.

<결과 및 해석>

○ 표준물질 반응을 하지 못하는 물질배지에서 생성된 표준물질 반응물질 분리로 반응된 것이 보였다.

[실험 2]
30℃와 42℃에서 A, B, C 물질 호소영양배지에 도달하여 cross-feeding test를 수행한다.

이에 대한 설명으로 옳은 것들을 <보기>에서 있는 대로 고른 것은?

(단, 표준의 화학 생장수도는 30%이다.)

<보기>

1. a, b 중의 화학물질이 필요하다.
2. a, b 중의 화학물질이 할증되어 생장이 수축하였다.
3. a, b 중의 화학물질이 A의 물질을 B의 물질로 이동시켰다.

* 확인 사항
○ 본제와의 답안지와 해답지의 필요한 내용을 정확하게 표기했는지 확인하십시오.