철골 건축구조물의 내진설계를 위한 소성 전단 힌지
Plastic Shear Hinges for the Seismic Design for Steel Building Structures

이 승 준 *

I. 서언

최근까지 우리나라에서 발생한 역사진과 계기 지진의 분석결과 건축물에 상당한 영향을 줄 수 있는 지진이 앞으로 발생할 가능성이 있는 것으로 밝혀진에 따라 1988년 건설부에 의해 내진설계 규제가 제정되었다(1).

내진설계 규제에서 요구되는 하중의 균관이 되는 지반의 진동 강도는 일반적으로 다음의 두 요소에 의해 나타낼 수 있다. 즉 근거리 지진을 위한 유효 최대가속도(Effective Peak Acceleration)와 원거리 지진을 위한 유효최대속도(Effective Peak Velocity)이다. 유효최대가속도와 유효최대속도는 최대
지반가속도(Peak Ground Acceleration)와 최대지반
속도(Peak Ground Velocity)에 관련이 있지만 간
나 비례관계에 있는 않다. 미국의 ATC3-06 (2)에서는 예상지진에 의한 유효최대가속도와 유효
최대속도에 따라 지진구역을 설정하였고 UBC (3)
는 예상최대지진을 기준으로 미국의 전지역을
5개의 구역으로 나누어 각 구역의 지진강도를 정하
고 있다. 우리나라의 내진설계규준은 전지역을
3개의 구역으로 각 지진강도를 나누어 가지고 있다. 한
구역에 나타난 지진강도는 50년동안에 발생할 확률
이 10%를 초과하는 지진에 근거하고 있다. UBC
나 한국 내진설계 규준이든 내진설계 규준의 적용
은 건축물의 설계시 비록 그 정도가 작더라도 지진
에 대한 위험도를 고려하여야 한다.

내진을 위한 건축물의 환호중 지기 구조 시스템
은 적당한 강성과 강도_Not Empty, 그리고 연성(Ductility)을
갖도록 설계되어야 한다. 적당한 강성과 강도는
약한 지진이나 중간규모의 지진이 일어날 때 피해
를 주로 비구조적 부분에 국한시키기 위하여 구조
물의 증가변형을 일정한 범위내로 제한하는데 필요
하며, 적대 험용 증가변형은 구조물에서 중요한
구조부재의 험용변형능력에 따라 결정된다.

연성은 강한 지진이 발생할 때 구조물에 요구되
는 성질이다. 강한 지진은 건축물의 수명내에 한변
또는 두 번 발생하지 보통. 따라서 강한 지진에
건축물이 붕괴되지 않고 인명의 피해를 피할 수
있다면 건축물이 탄성범위내에서 균동하도록 설계
하는 것은 경제적으로 타당하지 않다. 이러한 건축
물은 일부 부분에서 탄성변형을 넘는 응력을 받도
록 설계되는데. 적당한 연성은 구조부재와 접합부
뿐만 아니라 전체 구조시스템에 필요한 요구조건이
된다. 이것은 강한 지진을 흡수하면서 붕괴가 일어
나지 않도록 강도의 저하없이 큰 황변위에 견디게
구조물을 설계하는 것을 의미하며. 이러한 구조물
의 안정성은 비탄성범위에서의 구조물의 연성적
거동에 크게 의존하게 된다.

II. 내진설계에서 연성의 필요성

지진에 의해 건축물에 발생하게 되는 환력의

* 성희현, 아주대학교 건축학과 조교수, 공박
크기는 구조물의 진동주기와 크게 관계를 갖는다. 진동주기와 작은, 즉 상대적 강성이 큰 구조물은 상대적으로 큰 흔적율을 받게되고 그 반대도 성립한다. 한 구조물의 주기와 밀도,또한 반도는 C와의 변화관계가 그림1에 있다. 1차 자유도를 갖는 구조시스템의 강한 진동에 대한 흔적율은 부서의 분리경을 심선에 의해 나타났으며, μ=1로 되어 있는 회상부 심선은 진도 구조물이 작동범위내에서 가동하도록 설계할 때 필요한 작용하중의 크기를 나타낸다. 반면에 하부에 있는 인은 UBC에 의한 설계하중의 크기로 보여지고 있다. 두 경우의 흔적율의 크기는 크게 다를 뿐 수 있다. 그러나 구조물이 강도의 차이없이 성적적으로 가동하도록 되면 설계하중의 크기는 상당히 줄어들 수 있다. 그림1에서 볼 수 있듯이 구조물이 안전하게 작용으로 비상성 변위를 입을 수 있다면, 예를 들어 초기 향부식의 흔적율의 크기의 두배로 변위가 일어나면 μ=2에 의한 작용에 의해 설계될 수 있다. μ=4 또는 μ=6의 흔적율은 갖는 골조인 경우 설계하중은 더욱 줄어들게 된다. 위와 같은 이유때문에 구조물은 설계규준에 의한 하중에 대해 탄성을으로 설계될 수 있다. 다만, 그것에 충분한 연설이나 고조에 있어야 한다. 그러나 이러한 일반적인 설계 방법이 완전한 것은 아니다. 구조물의 설계는 탄성적인 방법을 이용해야 한다.

그림 1. 밀도-전단력 계수 곡선

면 설계자는 소성항목이 어느곳에 있어서나는지 모르며 그 정도 또한 인식하지 못하고 있다. 구조물 전체의 연설은 일반적으로 개개의 부재나 접합부에 요구된 연설보다 적절하다. 따라서 지진시 구조물에 생길 수 있는 비상성 영역과 그 크기에 대한 이해가 필요하다. 이에 이를 수용적으로 사용되는 철골조의 비상성 해석은 소성항목이 부재내 특히 부재의 양단에 소성 모멘트 힘의 형태로 생기는 것으로 인식되어 왔으며, 이러한 소성 모멘트 힘의 서방향력이 존재하면 그 능력이 저하된다. 그러므로 소성연결기전단력계수에 생기는 경우가 있다.

보기의 접합부에 있는 Panel Zone과 연결된 가재골조의 Link Beam이 대표적인 예가 될 수 있다.

III. Panel Zone

가장 경제적인 비용으로 강성과 강도등의 건축구조물에 요구되는 조건을 만족하는 건축물을 설계할 필요성에 의해 여론형태의 구조시스템이 발전되어 왔다. 일반적으로 건축구조시스템은 건축물의 높이에 따라 분류된다. 비교적 낮은 고층 건축물은 모멘트골조나 가재골조가 적절하며 건축물의 평면계획을 고려하여 모멘트골조가 가재골조에 비하여 선호되어 왔다. 이 골조는 부대건물의 강도를 차이나게 설계하고 적절한 설계를 택함으로써 연설과 Strong Column-Weak Beam의 내진설계 요구조건이 쉽게 충족될 수 있다. 그러나 보기의 접합부의 보강되지 않은 Panel Zone이 전단력에 의해 탄성법률을 넘는 응력이 생기는 경우가 있음을 알아야 한다.

고층 건축물의 내진설계에서는 단면의 설계는 종종 설계규준에 따른 적절한 꼭 모멘트에 의해 결정되지 않는다. 이것은 충진변위의 제한을 만족시키기 위해 보의 단면이 내진설계하중에 의하여 필요한 단면보다 크게 설계되어야 하기 때문이다. 이때 외와 같이 강도가 크게 설계된 보의 소성 모멘트가 기능에 전달될 수 있도록 보기의 접합부의 Panel Zone을 보강하는 것은 비용이 매우 많이 들게 되며 UBC 내진설계규준에서도 이러한 Panel Zone을 포함하여 보기의 접합부에 보의 소성모멘트에 상응한 강도를 갖도록 설계해야 함을.
그림2. 보-기둥 접합부

그림3. 접합부의 횡모멘트와 전단력

그림5. 접합부의 전단력-변형 곡선

그림6. PANEL ZONE의 전단변형에 의한 충간변위

그림4. PANEL ZONE의 전단변형

그림7. LINK BEAM의 상세
유지될 수 있다고 하며 그림5는 Panel Zone의 전단
력–전단변형(\(V - \gamma_r\)) 관계를 3계로 구분하여
보여주고 있다. 전단 횡부 변형(\(\gamma_c\))까지의 초기의
탄성영역과 \(\gamma_r\)와 \(4\gamma_r\) 사이의 영역, 그리고 그 이후
의 영역으로 나누어 질 수 있는데 마치 바닥 영역은
강성이 별로 크지 않은 전단에 대한 제료의 변형
경화에 의한 영역이다. 탄성영역과 변형경화 영역
사이의 중간영역은 Panel Zone의 부분적인 변형경
화와 Panel Zone의 주위에 있는 부분과, 즉 기둥
플랜지, 수평 stiffener, 보의 하부등의 강성에 의한
영역이다. 이 소성 전단 현자는 간조에 추가적인
자유도를 주게되며 따라서 이에 따른 중간변형을
일으키게 된다. 그림6은 Panel Zone의 전단 변형에
의한 중간변형의 크기를 보여주고 있다. 대략적으
로 Panel Zone의 변형, \(\gamma_r\)는 중간변형 Index(\(\delta_{cm}\))
와 일치한다. 이러한 추가적인 변형은 구조물의
\(p - \Delta\)Effect를 상당히 증가시킬 수 있다.

IV. Link Beam

앞에서 기술한 바와 같이 내진설계에 의한 건축
물은 구조물의 안정성이 지진동안이나 지진후에
유지되어야 하는 것이 필수적이다. 따라서 내진설계
시 구조물의 전체 안전성이 크게 영향을 주는 부분
에 특히 주의를 기어야 한다. 단일 비탄성 변형이
구조물의 일부 부재에 일어나도록 설계되었고 또
예상된다면, 비탄성 변형이 주요한 구조부재보다는
2차적인 부재에 일어나도록 구조물의 무게를 설계
하는 것이 바람직하다. 이러한 개념과 전단력에
의해 비탄성변형이 일어나는 무게는 Hysteresis
가동이 매우 안정성이 좋다는 결과를 이용하여
가세금조가 발생된 것이 편심가세금조이다. 실험결
과에 의하면 체내의 긴조는 반복하중에 의해 가세
재의 좌굴이 일어나고 따라서 pinching과 deteriorating을 갖는 hysteresis 가동을 나타내며 그 결과
에너지의 흡수하고 소산하는 능력이 작아 안정성이
작아진다. 때문에 UBC 내진설계규준은 편심가세금
조에 비해 설계중량을 20% 크게 요구하고 있
다.

그림7은 편심가세금조의 Link Beam의 한 상세
를 보여주고 있다. Link Beam은 기둥과 가세제사
이에 있는 보의 작은 부분이며 이러한 Link Beam이 있는 편심가세풀조의 형태는 다양하다(그림8.). Link Beam의 길이가 \(e \)가 길면 횡력에 의해 Link Beam의 양단에 모멘트 힘지가 생기게 되며 길이가 \(e \)가 짧으면 Link Beam의 웨브에 전단력에 의해 소성 전단 현자가 생기게 된다. 따라서 Link Beam이 전단력에 의한 횡부가 일어나도록 하기위해 다음식에 의해 그 길이를 결정하도록 요구하고 있다.

\[
e = \frac{2.0 M_p}{V_p}
\]

여기에서는 \(M_p \)는 Link Beam의 소성 모멘트, \(V_p \)는 전단 강도, \(\tau_{yw} \)이며 \(\tau_y \)는 재료의 전단 횡부응력, \(t_s \)는 웨브의 두께, \(h \)는 보판면의 높이이다. Link Beam에 축방향력이 있는 경우 웨브의 전단 강도는 Yield Criterion에 의해 감소된다. 이때 가재재는 좌굴이 일어나지 않도록 Link Beam에 비해 강도가 상대적으로 크게 설계되어야 한다.

그림9.은 구조물에 작용하는 횡력에 의해 생기는 전단력에 의한 Link Beam의 소성 전단 현지를 과장해서 나타내고 있으며 그림10.는 Link Beam의 소성 전단 현지에 의한 편심가세풀조의 붕괴 Mechanism이다. 이러한 붕괴 Mechanism은 구조물의 안정성을 유지시켜 주며 또한 지진 에너지를 크게 흡수, 소산시킬 수 있다.

V. 결언

고층 건축구조물의 내진설계에서는 강성, 강도와 연성사이의 균형이 적절하게 유지되어야 한다. 이 글은 철골 고층건축물의 대표적인 구조시스템인 모멘트 커먼지 가세풀조의 내진력에 대한 이해를 넣이고자 최근 연구되어온 Panel Zone과 Link Beam의 기통에 대한 결과와 설계시 유의사항을 간략하게 소개하였다. 미흡하다면 회원들에게 도움이 되었으면 하며, 이 분야에 대한 연구와 이에 관련된 개념의 새로운 구조시스템에의 적용은 앞으로 수행되어야 할 과제라 생각한다.

참고 문헌