발표 순서

- 표고버섯 재배환경 변화와 대응전략
- 버섯재배의 환경
- 표고버섯 톤범재배의 성공 열쇠
표고버섯 재배의 기본원리

표고버섯의 생활사
버섯균의 영양분 섭취방법

- 외생균균성 버섯: 식물의 두리와 연결
 - 적층: 송이, 낙엽층: 근비단그물버섯, 포푸리: 결절이그물버섯
- 사물기생버섯: 죽은 식물
 - 퍼색부유균: 섬을로오스와 헤미셀로오스 분해 이용
 느타리버섯, 표고, 영지버섯
 - 갈색부유균: 리그닌의 분해 이용
 덮다리버섯, 잔나비버섯, 미로버섯
- 화물기생버섯: 살아있는 동, 식물 이용
 - 동충하초, 동나무버섯

표고버섯의 재배생리

- 영양분: 수유성 양분 → 섬유소, 리그닌 분해이용
- 재배환경

<table>
<thead>
<tr>
<th>구분</th>
<th>균사생장</th>
<th>버섯발생</th>
</tr>
</thead>
<tbody>
<tr>
<td>온도(℃)</td>
<td>25</td>
<td>15 (변온)</td>
</tr>
<tr>
<td>원목수분함량(%)</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>톱밥수분함량(%)</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>습도(%)</td>
<td>90</td>
<td>90→70</td>
</tr>
<tr>
<td>조도(lux)</td>
<td>0</td>
<td>150 이상</td>
</tr>
<tr>
<td>탄산가스(%)</td>
<td>0.1 이하</td>
<td>1</td>
</tr>
</tbody>
</table>
인공재배 버섯의 주요재료

<table>
<thead>
<tr>
<th>주재료</th>
<th>버섯 종류</th>
</tr>
</thead>
<tbody>
<tr>
<td>원목</td>
<td>표고, 영지, 목이, 상황버섯, 느타리, 복 COPYING, 갓버섯</td>
</tr>
<tr>
<td>벗집류</td>
<td>느타리, 볼버섯, 양송이, 산갈버섯</td>
</tr>
<tr>
<td>송(배면)</td>
<td>느타리, 볼버섯</td>
</tr>
<tr>
<td>독박</td>
<td>만가닥버섯, 영지, 목이, 표고, 느타리, 평이, 버들송이, 큰느타리버섯</td>
</tr>
<tr>
<td>근층</td>
<td>누에, 동층하초</td>
</tr>
</tbody>
</table>

우리나라는 버섯 인공재배법 개발

- **1950** : 표고버섯 원목재배
- **1960** : 양송이(버섯줄기)
- **1970** : 느타리버섯(원목, 벗집), 평이버섯(병)
- **1980** : 영지(원목, 독박), 만가닥, 버들송이, 잎새버섯의 병재배 느타리버섯(솔, 독박 병재배)
- **1990** : 복경, 천마, 상황버섯(원목), 큰느타리버섯(병)
- **2000** : 동층하초(누에, 헌미), 노루궁뎅이, 꽃송이버섯(병, 봉지)
버섯의 재배방법

- 노지재배
 - 표고버섯, 복령, 천마(뽕나무버섯)

- 시설재배
 - 균상재배: 양송이, 신령버섯, 느타리버섯
 - 상자재배: 느타리버섯, 표고버섯
 - 병재배: 펭이, 느타리, 큰느타리버섯(새송이)
 - 비닐봉지재배: 표고, 느타리, 임새버섯, 복이
 - 지면재배: 표고, 영지, 상황버섯

버섯재배와 환경
버섯 재배 환경과 품질

<table>
<thead>
<tr>
<th>환경조건</th>
<th>품질양호</th>
<th>품질블랑</th>
</tr>
</thead>
<tbody>
<tr>
<td>배지 재료(영양)</td>
<td>충분</td>
<td>불균형</td>
</tr>
<tr>
<td>품종</td>
<td>중저온성</td>
<td>중고온성</td>
</tr>
<tr>
<td>배지 크기</td>
<td>큰 배지</td>
<td>작은 배지</td>
</tr>
<tr>
<td>갈변정도</td>
<td>완전 갈변</td>
<td>부분 갈변</td>
</tr>
<tr>
<td>온도</td>
<td>품종별 최적 온도 70%</td>
<td>높은 온도</td>
</tr>
<tr>
<td>습도</td>
<td>밭음</td>
<td>90%이상</td>
</tr>
<tr>
<td>조도</td>
<td>낮음</td>
<td>어두움</td>
</tr>
<tr>
<td>탄산가스 농도</td>
<td>높음</td>
<td>높음</td>
</tr>
<tr>
<td>병해충</td>
<td>밭음</td>
<td>밭음</td>
</tr>
<tr>
<td>휴양기간</td>
<td>충분</td>
<td>길음</td>
</tr>
<tr>
<td>저장기간</td>
<td>없음</td>
<td></td>
</tr>
</tbody>
</table>

버섯(작물)의 수량 결정요소

- 버섯의 수확량은 △의 최대면적을 결정하는 유전성(종균), 환경조건, 재배기술에 의해 결정

버섯산업의 특징

- 노동집약적: 단위 면적당 노동력이 다른 작물보다 많이 소요됨
- 자본집약적: 일반 작물보다 자동기계화재배로 초기 시설비가 많음
- 기술집약적: 버섯균을 재배하므로 고도의 전문적 기술이 요구됨
사회적 여건의 변화

● 농업인구의 감소, 노령화, 노동의 기피현상
● 국제적인 교역이 활발하고 FTA협약에 따라 농산물 수입개방 확대
 - 버섯 수출국에서 수입국으로 전환
● 교통의 발달로 세계는 1일, 국내는 반나절의 생활권화
● 정보화의 발달로 생산량, 교역량, 가격의 변동을 수시로 파악
● 유동의 대형화로 소량 생산자는 오히려 빠이익

식생활 습관의 변화

● 경제성장과 더불어 건강과 관련된 웰빙식품, 안전농산물의 소비가 증가
● 핵가족화로 소량의 신선한 간편 식재료, 가공품 구입
● 외식문화의 발달로 다양한 요리 개발 및 전문화
● 신세대는 음식의 서구화, 전통음식의 기피
버섯재배 환경의 변화(1)

- 배지재료: 원목재배에서 톡받재배로 전환되고 있음
- 기상조건: 지구의 온난화, 이상고온, 국지성 기상변화가 심해짐
- 부업형태에서 규모가 큰 전업형태의 경영
- 재배사형태: 구조, 형태 및 크기 등이 재배자별로 다름
- 재배방법 및 배지의 크기, 형태가 다양함

- 중국식, 일본식, 대만식의 비닐봉지 지면, 균상, 상자, 평상재배
- 배지크기는 1.3, 1.5, 3kg의 원통형, 2.5kg의 직육면체형

버섯재배 환경의 변화(2)

- 배지의 구입방법: 수입배지 → 국내산, 자가 생산 및 배양
- 재배시기: 품종별 적기재배 → 수시재배, 연중생산 증가
- 버섯 생산: 생산량 위주 → 고품질 생산
- 버섯 판매: 위탁판매 → 직거래, 인터넷 판매, 가공품 생산
 - 농장별 고유의 브랜드 개발, 고객관리
- 통일장소의 연장: 병해충 증가
표고버섯 톱밥재배의 성공 열쇠

재배에 필요한 기술 및 정보수집, 분석

● 재배방법별 장단점, 재배체계를 분석한 후 재배시작
 - 재배규모, 재배방법, 배지의 크기 및 형태, 자기배양 여부

● 재배사 구조, 자재, 크기, 방향, 재배시기 등을 고려하여 설치
● 재배기술은 사업 시작전에 미리 완전하게 습득
● 입지조건의 타당성 검토: 기상, 용수 확보, 시장 접근성, 노동력
주재료 및 영양원 등의 첨가재료 사용

- 톨밥은 수중, 입자크기, 아외발호 유무에 따라 버섯 수량과 품질결정
 - 수중 : 활엽수는 가능하나 함부목류 톨밥이 양호
 - 입자 크기 : 배지가 크면 수확기간이 길어져 쌓은 입자의 비율 증가

- 톨밥의 아외발호 : 유용 미생물이 활동할 수 있는 고온 조기성 발효
- 톨밥의 수분량, 야적тол밥 내부의 온도, 뒤집는 시기 및 횟수(기간)

- 영양분의 종류 및 첨가비율
 - 탄소, 질소 등의 필수양분, C/N비, 무기성분, 비타민의 종류 및 비율
 * 일본은 톨밥재배용 혼합영양제 사용

토말배지의 제조(지면봉지재배)

- 주. 첨가재료의 혼합, 배지를 수분량 조절 : 55-60%내외
- 원통형 배지의 크기는 1.3-1.5kg
- 배지가 크면 품질은 양호, 배양기간이 길고 생산효율은 낮음
- 입봉시 밀도(디짐도), 배지 중앙의 구멍 크기 및 길이 조절
- 배지의 크기에 따라 마개의 크기(직경)도 다름
 - 배지의 군사생장, 깊이기간 중에 탄산가스 농도에 따라 기간이 달라짐
 - 공기철러 부착 비닐봉지 : 종류, 위치
- 기온이 높은 시기에는 3시간 이내에 살균시작 : 변질방지
- 살균방법 : 산압, 고압살균
- 살균방법에 따라 비닐봉지의 재질 결정
- 살균시간중에는 충분한 배기 필요, 증기의 주입과 배기는 천천히
- 살균완료 후 깨내기전에 압력 유무를 반드시 확인하여 안전사고 방지
중균의 접종

- 재배할 품종의 접종용은 신용이 있는 배양소에 사전 계약
- 접종용은 사용전에 접종의 오염여부를 검사, 무균실 박입전 소독
- 무균실은 평상시에도 알코, 유황 등으로 소독, 배지를 옮기고 재소독
- 살균배지는 20℃ 이하로 식힌 후 접종
- 접종용은 구멍과 배지포면에 고르게 접종
 - 접종기 및 접종스푼은 수시로 소독하면서 사용
- 액체접종용은 배양 및 사용전에 세균의 오염 여부를 필히 검사
- 무균상이나 크린벤치의 필터는 수시로 검사, 소독

배지의 균사배양

- 배양실 온도는 초기(1주일 이내) 23-25℃, 이후에는 20-22℃ 유지
 - 배지의 생장이 활발해지면 배지의 온도는 실온보다 2-3℃ 높음
 - 중균접종 배지를 분양받아 배체에서 배양시 배양대 섭취
- 습도는 70%, 탄산가스 농도는 3,000ppm이하, 조도는 어둡게 관리함
- 배지에 군사가 생장하는 기간은 40일 정도이며 크기에 따라 다름
- 배양이 거의 완료되면 조도를 200룩스 이상으로 조절하여 갈변을 유도
 - 막변은 온도, 배지내 탄산가스 농도(환기량), 조도에 영향을 받음
- 초기는 배지의 표면과 위부터 음기가 생기고 갈변되며, 아래로 진행
- 배지 표면이 70%정도 갈변되면 재배치로 옮겨 버섯을 발생시킴
- 갈변증에 변온이 생기면 버섯이 발생되므로 주의 해야함
- 배양 및 갈변증에 오염이 된 배지는 제거하여 살균 후 폐기
첫 버섯의 발생 및 후기 갈변작업

- 갈변이 70%정도 진행된 것은 재배사로 옮겨 상부 1-2cm 부위를 절단
 - 적정온도 2,000-2,500℃, 배지무게 감소 10%내외
- 이때 자연적으로 발생한 버섯은 생장 후 수확
- 배지의 표면은 수시로 분무식 살수를 하여 갑작스러운 건조를 방지
- 이후의 후기 갈변은 버섯의 수량과 품질을 향상시키는 핵심기술
- 100일 후에는 4시간 정도의 살수, 배지 뒤집기, 살수, 재 뒤집기로 갈변촉진
- 후기 갈변작업은 10-15일 간격으로 3회를 실시하되 정차 시간을 연장시킴
 - 배지의 상단부터 갈변되면서 단단하고 배지를 수축되어 비닐과 분리됨
 - 완숙한 배지는 아래까지 단단하게 갈변이 되어야 함
 - 후기 갈변작업은 6-8월의 고온기에 실시하여야 배지 측면에서 버섯이 발생하지 못하여 효율성이 높음

갈변작업 중에 배지측면에서 발생하는 버섯은 초기에 눈이 죽어 얇은 소모를 막고 부패에 의한 접군의 오염을 줄임

버섯의 본 발생작업(1)

- 후기갈변 완료 배지의 품질별 버섯발생 범위내의 온도가 되면 발생작업 실시
- 버섯발생을 원활하게 하기 위하여 12시간 실수, 하루차례 뒤집어 높고 살수, 재 뒤집기를 하여 12시간도 살수를 하면 배지상면에서 주로 버섯이 발생함
 - 배지 표면의 건조가 심한 것은 살수시간과 뒤집어 붙는 시간을 연장
 - 버섯발생 작업이 완료된 배지무게는 개분시보다 다소 가벼움
- 갈변이 부족한 배지의 측면에서도 버섯이 발생하므로 앞과 같이 재거
 - 배지 상면으로 버섯이 발생하지 않고 비닐이 절단된 부위에서 발생하면 갈변이 미흡한 증거
- 기형버섯은 발생초기에 제거하여 모양이 좋은 것만 생장시킴
- 버섯이 발생하면 환기를 충분히 하고 안개 분무를 하여 고품질 유도
- 버섯의 생육중에는 재배사의 온도를 낮추고 변온을 시켜 품질향상
 - 낮에는 차갑방을 조절하여 가능한 방게하면서 습도를 낮춤
버섯의 본 발생작업(2)

- 버섯의 가격이 비싼 여름, 겨울에는 냉,난방시설을 하여 버섯 발생
 - 버섯의 주 생산시기에 따라 재배자의 높이를 여름에는 높게, 겨울에는 낮게 설치
 - 어린재배시 지하수가 풍부한 곳은 저물이나 비닐위에 실수실
- 버섯은 것이 피기 전에 수확하며, 고온기에는 하루에 2~3회 수확
- 버섯 수확 후 기벼운 살수와 습도 유지로 10여일 정도 배지를 휴양
 - 이후 4~5회(주7)에 걸쳐 반복하여 버섯을 발생시켜 수확
 - 버섯의 생산량은 배지 무게의 25~30% 정도임
 - 배지가 츠트는 수확 첫수가 더 많고 품질도 좋음
 - 주가가 지나면서 배지가 줄어들고 버섯의 품질도 떨어짐
- 여름이 될 때까지 버섯의 발생이 적어 배지의 상태가 좋은 것은 품통을
 한후 3일경부터 충분한 살수를 하여 다시 버섯을 발생시킴
 - 품통중 건조가 심하면 따뜻한 날 살수를 하여 수분을 보충

버섯의 판매

- 수확한 버섯은 -3℃정도에서 3시간 정도 급냉을 한 후 1℃로 저장
 - 기온이 높은 시기에 수술, 판매 등 전 유동과정은 자온으로 유지
- 버섯의 선별은 등급별로 구분하며, 시장에 따라 포장을 달리 판매
 - 갖고의 심도, 색깔, 크기, 모양, 수분함량 등이 중요함
 - 일반 도매시장은 플라스틱 큰 상자에 15kg정도씩 넣음
- 버섯의 포장은 가능한 소비자의 기호에 맞도록 소포장 출하
 - 절편 포장, 다른 음식재료와 혼합포장시 부가가치 향상
- 개인은 버섯의 생산시기와 양이 불규칙하여 유통에 매우 불리함
 - 지역별로 공동 선별장 준비, 동일 브랜드 출하로 상품가치 제고
- 상품가치 적은 버섯은 공동으로 분말, 깨두기 합, 가공품 생산 등으로 경영개선
- 농업재배 버섯은 건조시 수율이 13%로 낮아 수포고 판매 유리